Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Technical Analysis of a Proposed Shock Absorber Design Standard

2016-04-05
2016-01-1543
One important part of the vehicle design process is suspension design and tuning. This is typically performed by design engineers, experienced expert evaluators, and assistance from vehicle dynamics engineers and their computer simulation tools. Automotive suspensions have two primary functions: passenger and cargo isolation and vehicle control. Suspension design, kinematics, compliance, and damping, play a key role in those primary functions and impact a vehicles ride, handling, steering, and braking dynamics. The development and tuning of a vehicle kinematics, compliance, and damping characteristic is done by expert evaluators who perform a variety of on road evaluations under different loading configurations and on a variety of road surfaces. This “tuning” is done with a focus on meeting certain target characteristics for ride, handling, and steering One part of this process is the development and tuning of the damping characteristics of the shock absorbers.
Technical Paper

Development and Validation of Dynamic Programming based Eco Approach and Departure Algorithm

2024-04-09
2024-01-1998
Eco Approach and Departure (Eco-AnD) is a Connected Automated Vehicle (CAV) technology aiming to reduce energy consumption for crossing a signalized intersection or set of intersections in a corridor that features vehicle-to-infrastructure (V2I) communication capability. This research focuses on developing a Dynamic Programming (DP) based algorithm for a PHEV operating in Charge Depleting mode. The algorithm used the Reduced Order Energy Model (ROM) to capture the vehicle powertrain characteristics and road grade to capture the road dynamics. The simulation results are presented for a real-world intersection and 20-25% energy benefits are shown by comparing against a simulated human driver speed profile. The vehicle-level validation of the developed algorithm is carried out by performing closed-course track testing of the optimized speed solutions on a real CAV vehicle.
Technical Paper

Facilitating Project-Based Learning Through Application of Established Pedagogical Methods in the SAE AutoDrive Challenge Student Design Competition

2024-04-09
2024-01-2075
The AutoDrive Challenge competition sponsored by General Motors and SAE gives undergraduate and graduate students an opportunity to get hands-on experience with autonomous vehicle technology and development as they work towards their degree. Michigan Technological University has participated in the AutoDrive Challenge since its inception in 2017 with students participating through MTU’s Robotic System Enterprise. The MathWorks Simulation Challenge has been a component of the competition since its second year, tasking students with the development of perception, control and testing algorithms using MathWorks software products. This paper presents the pedagogical approach graduate student mentors used to enable students to build their understanding of autonomous vehicle concepts using familiar tools. This approach gives undergraduate students a productive experience with these systems that they may not have encountered in coursework within their academic program.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

CFD Simulation of Visor for cleaning Autonomous Vehicle sensors: Focus on a Roof Mounted Lidar

2024-04-09
2024-01-2526
The performance of autonomous vehicle (AV) sensors, such as lidars or cameras, is often hindered during rain. Rain droplets on the AV sensors can cause beam attenuation and backscattering, which in turn causes inaccurate sensor readings and misjudgment by AV algorithms. Most AV systems are equipped with cleaning systems to remove contaminants, such as rain, from AV sensors. One such mechanism is to blow high-speed air over the AV sensors. However, the cleaning air can be hindered by incoming headwind, especially at higher vehicle speeds. An innovative idea proposed here is to use a visor to improve the cleaning performance of AV cleaning systems at higher vehicle speeds. The effectiveness of a baseline visor design was studied using computational fluid dynamics (CFD) air flow analysis and Lagrangian rain droplet tracking. The baseline visor improved the AV sensor cleaning performance in two ways. First, the visor protects the cleaning air flow from being disturbed by headwind.
Technical Paper

Flow-Acoustic Coupling in Quarter-Wave Resonators Using Computational Fluid Dynamics

2001-04-30
2001-01-1430
Quarter-wave resonators are commonly used as acoustic silencers in automotive air induction systems. Similar closed side branches can also be formed in the idle air bypass, exhaust gas recirculation, and positive crankcase ventilation systems of engines. The presence of a mean flow across these side branches can lead to an interaction between the mean flow and the acoustic resonances of the side branch. At discrete flow conditions, this coupling between the flow and acoustic fields may produce high amplitude acoustic pressure pulsations. For the quarter-wave resonator, this interaction can turn the silencer into a noise generator, while for systems where a valve is located at the closed end of the side branch the large pressure pulsations can cause the valve to fail. This phenomenon is not limited to automotive applications, and also occurs in natural gas pipelines, aircraft, and numerous other internal and external flows.
Technical Paper

Introduction of the eGTU – An Electric Version of the Generic Truck Utility Aerodynamic Research Model

2024-04-09
2024-01-2273
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
X